图神经网络中的过平滑问题

图神经网络图解指南

图神经网络或简称 GNN 是用于图数据的深度学习 (DL) 模型。这些年来它们变得很热。这种趋势在 DL 领域并不新鲜:每年我们都会看到一个新模型的脱颖而出,它要么在基准测试中显示最先进的结果,要么是一个全新的机制/框架到已经使用的模型中(但是你阅读论文时会感到很简单)。这种反思让我们质疑这种专门用于图形数据的新模型存在的原因。

为什么我们需要GNN ?

图表无处不在:图表数据非常丰富,我认为这是展示我们每天产生或消费的材料最自然、最灵活的方式。从大多数公司和Facebook或Twitter等社交网络中使用的关系数据库,到科学和文学中连接知识创造的引文图表,我们不需要费力地列举一系列图表数据的例子。甚至图像也可以被看作是图表,因为它们的网格结构。

对于关系数据库,实体是节点,而关系(一对一,一对多)定义了我们的边。对于图像,像素是节点,可以用相邻的像素来定义边缘

模型能够捕获图中所有可能的信息:正如我们所见,图数据无处不在,并且采用具有特征向量的互连节点的形式。是的,我们可以使用一些多层感知器模型来解决我们的下游任务,但是我们将失去图拓扑为我们提供的连接。至于卷积神经网络,它们的机制专用于图的一种特殊情况:网格结构的输入,其中节点完全连接而没有稀疏性。话虽如此,唯一剩下的解决方案是一个模型,它可以建立在两个给出的信息之上:节点的特征和我们图中的局部结构,这可以减轻我们的下游任务;这就是 GNN 所做的。

GNN 训练哪些任务?

既然我们已经适度地证明了这些模型的存在,我们将揭示它们的用法。事实上,我们可以在很多任务上训练 GNN:大图中的节点分类(根据用户的属性和关系对社交网络中的用户进行细分),或全图分类(对药物应用的蛋白质结构进行分类)。除了分类之外,回归问题还可以在图数据之上制定,不仅适用于节点,也适用于边。

总而言之,图神经网络的应用是无穷无尽的,取决于用户的目标和他们拥有的数据类型。为简单起见,我们将专注于唯一图中的节点分类任务,我们尝试将以特征向量为首的节点图子集映射到一组预定义的类别/类。

该问题假设存在一个训练集,其中我们有一组标记的节点,并且图中的所有节点都有一个我们注意到 x 的特定特征向量。我们的目标是预测验证集中特征节点的标签。

节点分类示例:所有节点都有一个特征向量;

彩色节点已标记,而白色节点未标记

GNN的本质

现在我们已经设置了我们的问题,是时候了解 GNN 模型将如何训练以输出未标记节点的类。事实上,我们希望我们的模型不仅要使用我们节点的特征向量,还要利用我们处理的图结构。

使 GNN 独一无二的最后一条语句必须包含在某个假设中,该假设声明相邻节点倾向于共享相同的标签。GNN通过使用消息传递形式化来整合这一点,本文将进一步讨论这一概念。我们将介绍一些我们将在后面考虑的瓶颈。

上面说的非常的抽象,现在让我们看看 GNN 是如何构建的。事实上,GNN 模型包含一系列通过更新的节点表示进行通信的层(每一层为每个节点输出一个嵌入向量,然后将其用作下一层的输入以在其上构建)。

我们模型的目的是构建这些嵌入(对于每个节点),集成节点的初始特征向量和围绕它们的局部图结构的信息。一旦我们有了很好的嵌入,我们将经典的 Softmax 层提供给这些嵌入以输出相关类。

GNN的目标是将节点特征转换为能够感知图结构的特征

为了构建这些嵌入,GNN层使用了一种称为消息传递的简单机制,它帮助图节点与它们的邻居交换信息,从而一层接一层地更新它们的嵌入向量。

  • 消息传递框架

这一切都从一些节点开始,向量 x 描述它们的属性,然后每个节点通过置换等变函数(均值、最大值、最小值……)从其邻居节点收集其他特征向量。换句话说,一个对节点排序不敏感的函数。这个操作叫做聚合,它输出一个消息向量。

第二步是Update函数,节点将从它的邻居(消息向量)收集到的信息与它自己的信息(特征向量)结合起来,构造一个新的向量h: embedded。

该聚合和更新函数的实例化在不同的论文中有所不同。您可以参考GCN[1]、GraphSage[2]、GAT[3]或其他,但消息传递的思想保持不变。

我们的 GNN 模型第一层从特征向量 x0 到其新嵌入 h 的插图

这个框架背后的直觉是什么?好吧,我们希望我们节点的新嵌入能够考虑到本地图结构,这就是我们从邻居节点聚合信息的原因。通过这样做,人们可以直观地预见聚合后的一组邻居节点将具有更相似的表示,这将减轻我们最终的分类任务。在我们的第一个假设(邻居节点倾向于共享相同的标签)的情况下,所有这些都是成立的。

  • GNN 中的层组合

现在我们已经了解了消息传递的主要机制,是时候了解层在 GNN 上下文中的含义了。

回想上一节,每个节点使用来自其邻居的信息来更新其嵌入,因此自然扩展是使用来自其邻居(或第二跳邻居)的邻居的信息来增加其感受野并变得更加了解 图结构。这就是我们 GNN 模型的第二层。

我们可以通过聚合来自 N 跳邻居的信息将其推广到 N 层。

一层接一层,节点可以访问更多的图节点,并具有更多的图结构感知嵌入

在这一点上,您对 GNN 的工作原理有了一个高层次的了解,并且您可能能够发现为什么这种形式主义会出现问题。首先,在深度学习的背景下谈论 GNN 假设存在深度(许多层)。这意味着节点将可以访问来自距离较远且可能与它们不相似的节点的信息。一方面,消息传递形式主义试图软化邻居节点之间的距离(平滑),以便稍后简化我们的分类。另一方面,它可以通过使我们所有的节点嵌入相似来在另一个方向上工作,因此我们将无法对未标记的节点进行分类(过度平滑)。

在下一节中,我将尝试解释什么是平滑和过度平滑,我们将平滑作为增加 GNN 层的自然效果进行讨论,我们将了解为什么它会成为一个问题。

我还将尝试对其进行量化(从而使其可跟踪),并在此量化的基础上使用已发表论文中关于此问题的解决方案来解决它。

GNN 中的过度平滑问题

虽然消息传递机制帮助我们利用封装在图形结构中的信息,但如果结合 GNN 深度,它可能会引入一些限制。换句话说,我们对更具表现力和更了解图结构的模型的追求(通过添加更多层,以便节点可以有一个大的感受野)可以转化为一个模型,该模型对待节点都一样(节点表示收敛到不可区分的向量[4])。

这种平滑现象既不是错误也不是特例,而是 GNN 的基本性质,我们的目标是缓解它。

为什么会发生过度平滑?

消息传递框架使用了前面介绍的两个主要函数 Aggregate 和 Update,它们从邻居那里收集特征向量并将它们与节点自己的特征结合起来更新它们的表示。此操作的工作方式使交互节点(在此过程中)具有非常相似的表示。

我们将尝试在我们模型的第一层中说明这一点,以说明为什么会发生平滑,然后添加更多层以显示这种表示平滑如何随层增加。

注意:过度平滑表现为节点嵌入之间的相似性。所以我们使用颜色,其中不同的颜色意味着向量嵌入的不同。此外,在我们的示例中,为了简单起见,我们将仅更新突出显示的 4 个节点。

GNN的第一层

正如您在第一层中看到的,节点可以访问单跳邻居。例如,您还可以观察到,节点 2 和节点 3 几乎可以访问相同的信息,因为它们相互链接并具有共同的邻居,唯一的区别是它们的最后一个邻居(紫色和黄色)。我们可以预测它们的嵌入会略有相似。对于节点 1 和节点 4,它们彼此交互但具有不同的邻居。所以我们可以预测他们的新嵌入会有所不同。

我们通过为每个节点分配新的嵌入来更新我们的图,然后移动到第二层并执行相同的过程。

GNN的第二层

在我们 GNN 的第二层,节点 1,4 和 2,3 的计算图分别几乎相同。我们可能期望我们为这些节点更新的新嵌入将更加相似,即使对于以第一层的方式“幸存”的节点 1 和节点 4 现在也将具有相似的嵌入,因为额外的层使他们可以访问更多 图的部分,增加了访问相同节点的可能性。

这个简化的例子展示了过度平滑是 GNN 深度的结果。公平地说,这与真实案例相去甚远,但它仍然提供了这种现象发生背后的原因。

为什么这真的是一个问题?

现在我们了解了为什么会发生过度平滑,以及为什么它是设计好的,这是 GNN 层组合的影响,是时候强调我们为什么应该关心它,并激励解决方案来克服它。

首先,学习嵌入的目标是最后将它们提供给分类器,以预测它们的标签。考虑到这种过度平滑的效果,我们最终会为没有相同标签的节点得到类似的嵌入,这将导致错误标记它们。

有人可能认为减少层数会降低过度平滑的效果。是的,但这意味着在复杂结构数据的情况下不利用多跳信息,因此不会提高我们的最终任务性能。

示例:为了强调最后一句,我将用一个在现实生活中经常出现的例子来说明。想象一下,我们正在处理一个具有数千个节点的社交网络图。一些新用户刚刚登录该平台并订阅了他们朋友的个人资料。我们的目标是找到主题建议来填充他们的提要。

考虑到这个假想的社交网络,在我们的GNN模型中只使用1或2层,我们将只知道我们的用户关心连接的话题,但我们错过了其他多样化的话题,他可能会喜欢他的朋友的互动。

综上所述,过度平滑作为一个问题,我们遇到了一个低效率模型和一个更有深度但在节点表示方面更缺乏表现力的模型之间的权衡。

我们如何量化它?

现在我们已经明确表示过度平滑是一个问题并且我们应该关心它,我们必须对其进行量化,以便我们可以在训练 GNN 模型时对其进行跟踪。不仅如此,量化还将为我们提供一个指标,通过将其作为正则化项添加到我们的目标函数中(或不......),用作数值惩罚。

根据我最近的阅读,很多论文都处理了 GNN 中的过度平滑问题,他们都提出了一个度量来量化它,以证明他们对这个问题的假设并验证他们的解决方案。

我从处理这个问题的两篇不同论文中选择了两个指标。

  • MAD 和 MADGap [5]

Deli Chen 等人引入了两个量化指标 MAD 和 MADGap,来衡量图节点表示的平滑度和过度平滑度。

一方面,MAD 计算图中节点表示(嵌入)之间的平均平均距离,并使用它来表明平滑是向 GNN 模型添加更多层的自然效果。基于此度量,他们将其扩展到 MADGap,该度量度量不同类别节点之间表示的相似性。这种概括是建立在主要假设之上的,即在节点交互时,它们可以访问来自同一类的节点的重要信息,或者通过与来自其他类的节点交互来获取噪声。

当节点访问图的更多部分时,我们可能访问影响最终嵌入的嘈杂节点

在这篇文章中引起我兴趣的是作者对建立消息传递形式的主要假设的质疑方式(邻居节点可能有类似的标签)。事实上,他们的测量MADGap不仅仅是一个过度平滑的测量,而是一个相对于我们的节点收集的信号的信息噪声比的测量。因此,观察到这个比例一层接着一层地减小,就证明了图拓扑与下游任务目标之间的不一致。

  • 群距离比 [6]

Kaixiong Zhou 等人引入了另一个应变前向度量,但与 MADGap 具有相同的目标,即组距离比。该指标计算两个平均距离,然后计算它们的比率。我们首先将节点放在相对于它们的标签的特定组中。然后,为了构建我们的比率的提名者,我们计算每两组节点之间的成对距离,然后对所得距离求平均值。至于分母,我们计算每个组的平均距离,然后计算平均值。

说明如何计算群距离比图例

比例小意味着嵌入不同分组的节点之间的平均距离较小,因此我们可能会在分组的嵌入方面进行混合,这就是过平滑的证明。

我们的目标是保持一个高的组距离比,以在节点的嵌入方面有不同的类别,这将简化我们的下游任务。

有解决方案来克服过度平滑吗?

一个直接的监管规则?

现在我们已经量化了过度平滑问题,你可能会认为我们的工作被终止了,在我们的损失目标中添加这个度量作为一个规则就足够了。剩下的问题是,在我们的训练会话的每次迭代中计算这些度量(上面提到的)可能会耗费计算成本,因为我们需要访问我们的图中的所有训练节点,然后进行一些距离计算,处理二次缩放的节点对(C(2,n) = n * (n -1) / 2 = O(n²))

一个间接的解决方案?

因此,所有讨论过平滑问题的论文都考虑用其他更容易实现和对过平滑有影响的间接解决方案来克服这个计算问题。我们不会广泛讨论这些解决方案,但您将在下面找到其中一些参考资料。

至于我们的例子,我们将讨论Kaixiong Zhou 等人提出的可微群归一化[6]。DGN将节点分组,并对其进行独立归一化,输出新的下一层嵌入矩阵。

这个额外的层是用来优化前面定义的组距离比或Rgroup。实际上,在一个组内嵌入节点的归一化使得它们的嵌入非常相似(减少了Rgroup的分子),而这些使用可训练参数的缩放和移动使得来自不同组的嵌入不同(增加了Rgroup的分子)。

为什么有效?第一次看论文,没看到加入这个归一化层和优化Rgrou比之间的联系,后来我观察到这一层一方面使用了一个可训练的分配矩阵,因此它有来自我们的损失函数,因此指导将完美情况下的节点分配给它们的真实类。另一方面,我们还有平移和缩放参数,它们也由我们的损失函数引导。那些用于将一组嵌入到另一组的不同嵌入的参数因此有助于下游任务。

总结

这篇文章可能很长,但它只触及了图神经网络及其问题的表面,我试图从 GNN 的小探索开始,并展示它们如何 - 使用如此简单的机制 - 解锁我们无法想到的潜在应用其他 DL 架构的上下文。这种简单性受到许多阻碍其表达能力的问题的限制(至少目前来说),研究人员的目标是克服它,以寻求利用图数据的全部力量。

至于我,我阅读了不同的论文,讨论了一些 GNN 的限制和瓶颈,但将它们统一起来的一个共同点是,所有这些问题都可以与我们用来训练图模型的主要机制相关联,即消息传递。我可能不是专家,但我必须提出一些问题。继续列举这些问题并试图解决它们真的值得吗?既然我们仍处于这样一个有趣领域的第一次迭代中,为什么不考虑一种新机制并尝试一下呢?

引用

[1] Kipf, T. N. (2016, September 9). Semi-Supervised Classification with Graph Convolutional Networks. ArXiv.Org. https://arxiv.org/abs/1609.02907

[2] Hamilton, W. L. (2017, June 7). Inductive Representation Learning on Large Graphs. ArXiv.Org. https://arxiv.org/abs/1706.02216

[3] Veličković, P. (2017, October 30). Graph Attention Networks. ArXiv.Org. https://arxiv.org/abs/1710.10903

[4] Oono, K. (2019, May 27). Graph Neural Networks Exponentially Lose Expressive Power for Node Classification. ArXiv.Org. https://arxiv.org/abs/1905.10947

[5] Chen, D. (2019, September 7). Measuring and Relieving the  Over-smoothing Problem for Graph Neural Networks from the Topological  View. ArXiv.Org. https://arxiv.org/abs/1909.03211

[6] Zhou, K. (2020, June 12). Towards Deeper Graph Neural Networks with Differentiable Group Normalization. ArXiv.Org. https://arxiv.org/abs/2006.06972

作者:Anas AIT AOMAR

原文地址:https://towardsdatascience.com/over-smoothing-issue-in-graph-neural-network-bddc8fbc2472
翻译(转自):DeepHub IMBA

欢迎加入Imagination GPU与人工智能交流群

群已满200人,入群请加小编拉进群,

小编微信号:eetrend89(添加请备注公司名和职称)

推荐阅读

为什么以太网是车载连接的基础?

END

Imagination Technologies是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作场所中使用。获取更多物联网、智能穿戴、通信、汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech !

长按识别二维码


关注我们

Imagination官方博客
关注 关注
  • 10
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
博客
科普:GPU和FPGA,有何异同
06-14 15
来源:内容由半导体行业观察(ID:icbank)编译自techspot,谢谢。图形处理单元 (GPU) 和现场可编程门阵列 (FPGA) 是用于成像和其他繁重计算的三种主要处理器类型中的两种。中央处理器 (CPU) 是第三种类型。让我们深入了解 GPU 和 FPGA 之间的主要区别、它们的优势、常见用例以及何时选择其中一种。什么是 FPGA?FPGA(现场可编程门阵列)是一种具有可编程硬件结构的集...
博客
HMI界面设计如何提升智能驾驶的人机交互信任?
06-13 8
随着智能驾驶技术的不断进步,人们对于自动驾驶系统的信任成为了一个重要的议题。虽然技术取得了显著进展,但在用户与系统之间建立信任方面仍存在一些关键问题。本文将阐述用户不信任智能驾驶的因素,以及如何从HMI及用户体验原则角度提升信任度,让我们的智驾产品使用率更高、获得更多用户的认可!在智能驾驶中的信任问题1. 技术可靠性智能驾驶系统的稳定性和可靠性对用户的信任至关重要。频繁的技术故障、系统崩溃或误判可...
博客
算力基础设施的风险与挑战
06-12 15
编者按算力网络有一个美好的愿景,就是希望算力和算网,能像电力和电网一样:算力可以标准化,有统一的计量单位。类似电力计量的千瓦时,或称为度数。有很多算力中心生产算力,类似电厂生产电力。生产出来的算力,通过接入算网,最终供应给算力的客户。类似电厂的电力,通过电网接入千家万户。算力“随时随地,无处不在”,算力客户可以非常方便的随时接入任何位置的算力,支撑自己的业务。类似无处不在的电源接口,方便我们随时随...
博客
作为深度学习的代表,GPU是如何计算的?
06-11 13
当提到CPU(Central Processing Unit,中央处理器)时,就是机器的“大脑”,是计算机系统的核心部件,也是布局谋略、发号施令、控制行动的“总司令”。CPU的结构主要包括运算器(ALU, Arithmetic and Logic Unit)、控制单元(CU, Control Unit)、寄存器(Register)、高速缓存器(Cache)和它们之间通讯的数据、控制及状态的总线。简...
博客
一篇文章看懂:什么是PBR?
06-07 92
学习建模的同学肯定会听说过PBR,它就像“一键美颜”一样,让模型师的工作变得效率高且质量更好。PBR全称是Physically Based Rendering,是一种以物理上精确的方式模拟光与材质相互作用的渲染技术。它通过考虑材质的物理特性(例如反射率、粗糙度和透明度)来创建更真实、更可信的图形。由于其高度的易用性以及方便的工作流,可以在不同的软件中渲染出相同的效果,而不必担心切换软件造成的材质效...
博客
RISC-V现在发展得怎么样了?
06-06 24
本文来源:物联传媒、麦穗Omdia的报告预计,到2030年,RISC-V架构芯片的出货量将达到170亿,市场份额将占到25%,尤其在工业和汽车行业增长加快。这一预测也表明RISC-V架构正迅速获得市场认可,也意味着它或将打破长期以来由少数传统架构主导的市场格局。RISC-V的巨大市场潜力得益于以下几方面:开源优势:RISC-V是一个开源的指令集架构,这意味着任何人都可以自由地使用、修改和分发它,这...
博客
如何从处理器和加速器内核中榨取最大性能?
06-05 17
本文由半导体产业纵横(ID:ICVIEWS)编译自semiengineering利用缓存增强低成本、上一代或中端的 SoC。一些设计团队在创建片上系统(SoC)设备时,有幸能够使用最新和最先进的技术节点,并且拥有相对不受限制的预算来从可信的第三方供应商那里获取知识产权(IP)模块。然而,许多工程师并没有这么幸运。对于每一个“不惜一切代价”的项目,都有一千个“在有限预算下尽你所能”的对应项目。一种从...
博客
通过强化学习策略进行特征选择
06-04 20
来源:DeepHub IMBA特征选择是构建机器学习模型过程中的决定性步骤。为模型和我们想要完成的任务选择好的特征,可以提高性能。如果我们处理的是高维数据集,那么选择特征就显得尤为重要。它使模型能够更快更好地学习。我们的想法是找到最优数量的特征和最有意义的特征。在本文中,我们将介绍并实现一种新的通过强化学习策略的特征选择。我们先讨论强化学习,尤其是马尔可夫决策过程。它是数据科学领域的一种非常新的方...
博客
大语言模型(LLM)快速理解
06-03 25
自2022年,ChatGPT发布之后,大语言模型(Large Language Model),简称LLM掀起了一波狂潮。作为学习理解LLM的开始,先来整体理解一下大语言模型。一、发展历史大语言模型的发展历史可以追溯到早期的语言模型和机器翻译系统,但其真正的起点可以说是随着深度学习技术的兴起而开始。1.1 统计语言模型在深度学习技术出现之前,语言模型主要基于传统的统计方法,也称为统计语言模型(SLM...
博客
今天14:00,Imagination技术经理出席 EEPW“边缘智能”线上圆桌会议
05-31 13
随着物联网、大数据、云计算等技术的迅猛发展,边缘智能作为新一代智能计算技术,正逐渐成为推动数字化转型和智能化升级的重要力量。5月31日周五14:00-16:00,Imagination资深技术经理王桥受邀出席EEPW举办的线上圆桌会议, 与其他技术专家探讨在边缘智能技术的最新进展、应用前景以及面临的挑战。参会嘉宾与日程:14:00-14:05主持人开场(李健,EEPW总编)14:05-14:35演...
博客
浅谈车机交互的现状和未来
05-30 24
车载信息娱乐系统的发展历史并不长,走向智能化、网联化只是过去十几年间的事情。纵观其发展历程,大致可以分为三个阶段:初级阶段(1910年至1990年代):1910年,爱立信创始人拉什·马格拉斯·爱立信(Lars Magnus Ericsson)在他的车内安装了一部电话,与其说为了满足富豪车主需求,更像是推广自家产品。1924年,雪佛兰打造出世界上首款车载收音机,标志着车载信息娱乐时代的开启。之后的大...
博客
2024年全球半导体产业发展态势解析
05-29 27
本文由半导体产业纵横(ID:ICVIEWS)编译自semiconductorintelligence2024年开局缓慢,但已为增长做好准备。根据 WSTS 的数据,2024 年第一季度全球半导体市场规模为 1377 亿美元。2024 年第一季度比 2023 年第四季度下降 5.7%,比去年同期增长 15.2%。今年第一季度通常比上一年第四季度季节性下降。然而,2024年第一季度5.7%的降幅比预期...
博客
AIGC+实时云渲染:开启3D内容生态的黄金时代
05-27 30
AIGC与GPT-4浪潮一起涌入大众视野,在创作领域,人工智能取得了巨大的进步,并逐渐帮助甚至取代了人类进行复杂的创作活动。人工智能已经从以前的理解演变为自动生成内容,这宣布了人工智能时代的到来。AIGC的全称是 “人工智能生成内容”(AI Generated Content)”。“它是一个涉及自然语言处理的宏大概念(Natural Language Processing,NLP)、许多领域,如...
博客
高性能计算集群的能耗优化
05-24 22
高性能计算(High Performance Computing,HPC)是指利用大规模并行计算机集群来解决复杂的科学和工程问题的技术。高性能计算集群的应用领域非常广泛,包括天气预报、生物信息学、人工智能、大数据分析等。随着高性能计算集群的规模和性能的不断提升,其能耗问题也日益突出。高性能计算集群的能耗不仅增加了运行成本,还对环境造成了不利影响,例如温室气体排放、水资源消耗等。因此,如何降低高性能...
博客
人工智能需要强大的计算能力,光芯片有帮助吗?
05-23 27
本文由半导体产业纵横(ID:ICVIEWS)编译自quantamagazine光学神经网络使用光子而不是电子,比传统系统具有优势。摩尔定律已经相当快了。它认为,计算机芯片每两年左右就会安装两倍数量的晶体管,从而在速度和效率上产生重大飞跃。但深度学习时代的计算需求增长速度甚至更快——这种速度可能不可持续。国际能源署预测,2026年人工智能消耗的电力将是2023年的10倍。计算硬件公司Lightmat...
博客
CPU渲染和GPU渲染优劣分析
05-22 24
使用计算机进行渲染时,有两种流行的系统:基于中央处理单元 (CPU) 或基于图形处理单元 (GPU)。CPU 渲染利用计算机的 CPU 来执行场景并将其渲染到接近完美。这也是执行渲染的更传统方式。然而,随着 GPU 的出现,基于 GPU 的渲染获得了很大的普及。这些 GPU 是特定用途的芯片,在某些情况下提供与 CPU 渲染相当的结果。从广义上讲,GPU 渲染允许同时运行更多的并行进程,这使其速度...
博客
在线研讨会 | 深入了解Imagination APXM-6200:全新性能密集型应用CPU
05-21 20
Imagination Technologies 重磅推出 Catapult CPU IP系列的最新产品 Imagination APXM-6200。这款RISC-V应用处理器具有极高的性能密度、无缝安全性和人工智能(AI)功能,可满足下一代消费和工业设备对计算和智能用户界面的需求。Imagination APXM-6200 CPU 是一款 64 位按序应用处理器,其双发 11 级指令流水线可为消...
博客
人工智能将加速RISC-V的采用:全球占比将达25%
05-20 24
来源:内容由半导体行业观察(ID:icbank)编译自semiconductor-digest根据 Omdia 的最新研究,到 2030 年,RISC-V 处理器将占据全球市场的近四分之一 。尽管工业领域仍将是该技术最大的应用领域,但预计开放标准指令集架构 (ISA) 将在汽车领域实现最强劲的增长。此外,人工智能 (AI) 的兴起也有助于 RISC-V 的持续崛起。RISC-V 值得注意的是,它是...
博客
智能座舱179种功能一览
05-17 34
随着新四化的开展,汽车已经开始从简单的交通工具逐渐向智能终端转变。智能座舱作为用户和车辆进行交流的界面,逐步成为企业产品智能化的新破局点。智能汽车渗透率有望在2025年达到83%,智能座舱和智能驾驶是智能汽车的两大核心,受限于技术、成本、道路条件等因素,智能驾驶落地较为缓慢。而得益于软硬件技术的快速迭代,智能座舱领域正在快速发展,消费者开始将汽车视为“第三生活空间”。智能座舱通过语音、视觉和触觉等...
博客
为什么GPU对AI如此重要?
05-16 76
GPU在人工智能中相当于稀土金属,甚至黄金,它们在当今生成式人工智能时代中的作用不可或缺。那么,为什么GPU在人工智能发展中如此重要呢?什么是GPU图形处理器(GPU)是一种通常用于进行快速数学计算来渲染图形和图像的计算机芯片专业和个人计算。最初,GPU负责渲染2D和3D图像、动画和视频,但现在它们的应用范围更广,尤其在人工智能领域。GPU应用具有嵌入式或离散GPU的电子设备能够流畅地渲染3D图形...

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 2020那些搭载Imagination IP的设备(国内篇) 30597
  • 5G打通云边端,自动驾驶、云游戏等应用加速演进 28213
  • 带你三分钟了解算力 12775
  • 汽车功能安全工程师必看!ISO 26262认证基本原理解析 7929
  • Imagination在GDC 2022上推出下一代移动游戏解决方案 7435

分类专栏

  • 最新动态 3篇
  • 开发指南 6篇
  • 万物互联
  • 智能驾驶 6篇
  • 游戏 1篇

最新评论

  • 7个流行的强化学习算法及代码实现

    雾行@: 如果每个节点有四个策略,选择效益最高的策略的信息,逐个节点寻优,最终达到终点。 因为每个节点情况不一样,比如说到A点B-C之间通行时间是2,在F点B-C通行时间可能是5,每经过一个节点,所有路段的通行时间都会变化。所以它一次只能优化一个节点,达到终点后迭代结束 这种情况适合哪个算法呢

  • 7个流行的强化学习算法及代码实现

    雾行@: 无模型,非策略是什么意思呢

  • 人工智能将加速RISC-V的采用:全球占比将达25%

    CSDN-Ada助手: Python入门 技能树或许可以帮到你:https://edu.csdn.net/skill/python?utm_source=AI_act_python

  • ChatGPT研究框架(80页PPT)

    赤赤333: ChatGPT

  • 关于人工智能的60条趋势预测

    CSDN-Ada助手: 不知道 Python入门 技能树是否可以帮到你:https://edu.csdn.net/skill/python?utm_source=AI_act_python

大家在看

  • 集成学习方法:Bagging与Boosting的应用与优势
  • HCIA17 Python自动化基础 之telnet lib 库
  • 运维系列&Windows系列:电脑内存明明还有很多,程序却显示内存不足,报错DefaultCPUAllocator: not enough memory:you tried to allocate 901
  • 124. 二叉树中的最大路径和
  • 数据库面试 476

最新文章

  • 科普:GPU和FPGA,有何异同
  • HMI界面设计如何提升智能驾驶的人机交互信任?
  • 算力基础设施的风险与挑战
2024
06月 9篇
05月 20篇
04月 19篇
03月 21篇
02月 15篇
01月 19篇
2023年214篇
2022年181篇
2021年222篇
2020年114篇

目录

目录

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

聚圣源社区物业公司起名男孩起名李元什么德语助手在线翻译水产类店铺起名乌鲁木齐哪里有起名字的你值得拥有少儿科教频道正在播出禹字起名寓意好不易经起名企业大全唐朝好医生王楚钦个人资料简介桂花作文双胎起名男孩半命题作文绝密押运剧情介绍尸检无名女尸创意产品起名寓意吉祥的成语起名字zhe网店起名网免费取名公司起名 凶吉00后起名常用字如何清除电脑缓存cctv风云足球在线直播管中窥豹用夏起名大全女孩名字牛宝宝起名带木字旁2021中兴u930一键root去哪网酒店预订免费公司起名网免费取名测试淀粉肠小王子日销售额涨超10倍罗斯否认插足凯特王妃婚姻让美丽中国“从细节出发”清明节放假3天调休1天男孩疑遭霸凌 家长讨说法被踢出群国产伟哥去年销售近13亿网友建议重庆地铁不准乘客携带菜筐雅江山火三名扑火人员牺牲系谣言代拍被何赛飞拿着魔杖追着打月嫂回应掌掴婴儿是在赶虫子山西高速一大巴发生事故 已致13死高中生被打伤下体休学 邯郸通报李梦为奥运任务婉拒WNBA邀请19岁小伙救下5人后溺亡 多方发声王树国3次鞠躬告别西交大师生单亲妈妈陷入热恋 14岁儿子报警315晚会后胖东来又人满为患了倪萍分享减重40斤方法王楚钦登顶三项第一今日春分两大学生合买彩票中奖一人不认账张家界的山上“长”满了韩国人?周杰伦一审败诉网易房客欠租失踪 房东直发愁男子持台球杆殴打2名女店员被抓男子被猫抓伤后确诊“猫抓病”“重生之我在北大当嫡校长”槽头肉企业被曝光前生意红火男孩8年未见母亲被告知被遗忘恒大被罚41.75亿到底怎么缴网友洛杉矶偶遇贾玲杨倩无缘巴黎奥运张立群任西安交通大学校长黑马情侣提车了西双版纳热带植物园回应蜉蝣大爆发妈妈回应孩子在校撞护栏坠楼考生莫言也上北大硕士复试名单了韩国首次吊销离岗医生执照奥巴马现身唐宁街 黑色着装引猜测沈阳一轿车冲入人行道致3死2伤阿根廷将发行1万与2万面值的纸币外国人感慨凌晨的中国很安全男子被流浪猫绊倒 投喂者赔24万手机成瘾是影响睡眠质量重要因素春分“立蛋”成功率更高?胖东来员工每周单休无小长假“开封王婆”爆火:促成四五十对专家建议不必谈骨泥色变浙江一高校内汽车冲撞行人 多人受伤许家印被限制高消费

聚圣源 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化